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Abstract 

 Brittle parts of ceramic/metal assemblies are subjected to a residual stress field 

generated by the fabrication. During that process, cracks are initiated and the key question is 

whether they propagate through the whole brittle part. The use of classical probabilistic 

fracture models applied to the ceramic (i.e., based on a weakest link hypothesis), allow one to 

conclude that cracks are likely to initiate after the manufacturing process. Consequently, a 

crack arrest model is proposed, based on a random toughness distribution. Applied to micro-

hardness experiments, the statistical parameters are identified, and the predictive capacity of 

the model is analyzed. The model is then used to study the reliability of ceramic/metal 

assemblies during the fabrication stage. 
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I.  Introduction 

The use of components made of different materials (e.g., a ceramic/metal assembly) is 

interesting for industrial applications because of the presence of different physical properties. 

In a ceramic/metal assembly, the isolating properties even at high temperatures and the 

chemical inertia of the ceramic are used, whereas the metallic part provides its ductile 

behavior and its conducting capacities. These assemblies are used in different domains: 

medical (prosthesis, neuro-stimulator), electronic (connector), nuclear (recycling, storage), 

aeronautical (sensor). The ability of such components to sustain processing and in-service 

loadings is crucial. 

The components studied herein are assembled at the melting temperature of the 

brazing joint (e.g., 780°C for an Ag-Cu eutectic). The dimensions of the different parts are 

controlled to be properly assembled at this temperature. Because of the coefficient of thermal 

expansion mismatch, thorn singularities arise when the elastic properties of the materials are 

identical (Bui and Taheri, 1989) and strong singularities when the elastic properties are 

different (Williams, 1959; Schmauder, 1989; Desmorat and Leckie, 1998). The residual 

stresses and these different singularities may generate the initiation and propagation of cracks 

in the brittle part of the component, eventually causing in-service failure. 

Upon assembling the metallic and ceramic parts, crack initiation and propagation 

occurs because of the presence of processing defects (e. g., porosities or inclusions) induced 

by prior sintering of the ceramic. These defects are random in size and randomly distributed 

within the material. The initiation probability is therefore the probability of finding critical 

defects within the ceramic. A Weibull model (1939) can be used to evaluate the latter. 

Contrary to situations for which the initiation of a macro-crack leads to final failure of a 

structure (i.e., a weakest link hypothesis is made (Freudenthal, 1968)), there are situations for 
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which this hypothesis is not valid. For instance, multiple cracking may occur in impacted 

ceramics (Riou et al., 1998) or in fiber reinforced composites (Aveston and Kelly, 1973). In 

other cases, crack arrest may occur (e.g., ceramic/metal assemblies). Consequently, the 

weakest link framework has to be altered and the issue of crack arrest becomes the key 

element in assessing the reliability of the assembly after processing. 

Crack arrest can be considered as finding one point where the crack propagation 

criterion is not met. In many cases this criterion is assumed to be deterministic (Griffith, 

1921; Irwin, 1957). However there are experimental evidences to suggest that the critical 

value may be of statistical nature (Ponton and Rawlings, 1989b). Following the hypothesis 

proposed by Chudnowsky and Kunin (1987) or Jeulin (1994), it is assumed that the critical 

value is constant for each grain, but varies from one grain to another one. Consequently a 

probabilistic framework can be derived in which crack arrest is not deterministic but 

probabilistic. 

Section II is devoted to the derivation of the probability of crack extension when the 

material toughness is randomly distributed. Section III addresses the general properties that 

can be deduced from the extension probability. Section IV deals with the identification of the 

toughness distribution for alumina (Al2O3) ceramics by using a micro-hardness experiment. 

Lastly, a practical situation is studied in Section V. 

II.  Crack Arrest: a Probabilistic Approach 

 Since a Weibull model cannot be used to predict the ability of a brittle volume to 

experience crack arrest, the probabilistic conditions for crack arrest are analyzed. Following 

Chudnowsky and Kunin (1987), we assume that a brittle medium is composed of grains, with 

random toughness. The realization of this random variable is assumed to be grain-

independent, and is characterized by a probability density function . The toughness is 
cKh
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assumed to be constant for each grain (i.e., transgranular fracture) or each grain boundary 

(i.e., intergranular fracture). In all cases, we consider that the crack is submitted to an overall 

mode I loading. 

II.1.  A Simple Model for the Material Microstructure 

In the following, we consider a 2D situation for which the crack path is aligned along 

the x-axis. It can be noted the results can be generalized to curved cracks. Each grain or grain 

boundary is a potential crack arrest site. 

II.1.1. Transgranular Fracture 

 The most important feature of the grain distribution is its intersection with the 

considered crack path. As a first approximation, we assume that this intersection has a 

constant length 1/λ (Fig. 1). It follows that there are λ grains per unit length. The crack is 

submitted to a mode I condition along a given crack path, and its propagation stops when the 

following criterion is satisfied (Griffith, 1921; Irwin, 1957) 

 ( ) k
cI <KxK  (1) 

where  is the stress intensity factor when the crack is at location x, and  the 

toughness of the k

( )xKI
k
cK

th grain. Besides, we consider that the failure of each grain of a given path is 

‘instantaneous,’ and that the crack propagation is only transgranular. Let us consider a crack 

path composed by N grains. The probability that a crack propagates through all these grains is 

 { } ( )( )k
ckIN >Kx, K,...,N  i P 1∈∀ , (2) 

where 

 ( ) ( )xKxK I
graink

kI th 
min= . (3) 

Because of the grain-independent realization of the toughness, Eq. (2) becomes 
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Equation (4) can be rewritten as 
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If the number of grains N becomes large, then a continuous formulation can be derived 
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where 
N

ab −  is the average grain length, i. e. λ=
− ab
N . By knowing the probability density 

function of toughness, one can determine the probability for a crack to propagate in mode I 

from a length a to a length b on a given path 

 , (7) (( ⎥
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where Kc
min  ≥ 0 is the minimum value of the toughness of the considered material. 

II.1.2.  Intergranular Fracture 

 Crack propagation may also be intergranular. Let us assume that the boundary 

between two grains is linear, and has a constant length 1/λ. One random variable is the 

orientation of the grain boundary θ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎢⎣
⎡

⎥⎦
⎤−∈ axisn propagatio overall  theofrespect  with ,

22
π,π . 

It can be noted that the toughness and the elastic properties are also random variables. The 

crack has a constant direction between two triple points, i.e., each point where three grains 

intersect (Fig. 2). Crack propagation occurs when 

 6



 Γ2>)G(x,θ  (9) 

where G(x,θ) is the energy release rate of a kinked crack of length x and with a small 

extension of orientation θ, and Γ is the fracture energy of the grain boundary. By using weight 

functions (Bueckner, 1970; Rice, 1972), the energy release rate G(x,θ) under remote mode I 

conditions becomes 
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where E is the Young’s modulus and ν the Poisson's ratio of the uncracked material. The 

crack propagation criterion (9) can be written as 

 ( )θf
ExK I

'2)( Γ
> . (12) 

We can conclude that when the crack propagates in an intergranular way in a random 

medium, we end up with an expression similar to that derived for transgranular fracture by 

introducing the random toughness cK~  defined by 

 ( )θf
EKc

'2~ Γ
= . (13) 

Then, the probability for a crack propagating from a length a to a length b is 

 , (14) (( ⎥
⎦

⎤
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Equation (14) can be applied provided the correlation between two consecutive grain 

orientations is sufficiently small to influence the apparent toughness distribution cK~  so that 

the realization of the random variable is still independent from grain boundary to grain 

boundary. Therefore, Eq. (7) can be used in the two situations. 

II.2.  Poisson Mosaic 

 Another statistical two-dimensional transgranular propagation model based on the 

random set theory (Matheron, 1975) has been established by Jeulin (1994). A Poisson 

tessellation of parameter λ defines the grain boundaries. The latter are made of Poisson lines 

in the plane for a two-dimensional medium. In particular, the probability that a segment of 

length l hits N(l) = n grain boundaries is 

 ( ) ( ) l
n

e
n
lnlNP λλ −==
!

)( , (15) 

where N(l) is a random variable. The average number of grains per unit length is λ. It is also 

assumed that each grain has a constant toughness. By using a Griffith criterion on a crack of 

length x, one can compute the propagation probability to a length x+dx for increasing stress 

intensity factors. The crack has a length x with a probability P(x). In a segment of length dx: 

• there is one grain with a probability ( ) dxdxNP λ−≈= 10)( . Then the probability of 

propagating a crack to a length x+dx is P(x), because of the increase of the stress intensity 

factor with x, 

• there are two grains with a probability ( ) dxdxNP λ≈=1)( . Then the probability for the 

crack to propagate to a length x+dx is . )P(x)(x+dx)>KP(K cI

One can relate P(x) and P(x+dx) by 

 ( ) )(x+dx)>KλdxP(x)P(Kλdx)P(x)(dxxP cI+−=+ 1 . (16) 

The following differential equation is obtained (Jeulin, 1994) 
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)
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By integrating Eq. (17), the propagation probability is expressed as 

 . (18) ( ⎥
⎦

⎤
⎢
⎣

⎡
>−−= ∫

b

a
cI dxKxKPbaP ))((1exp),( λ

We can note that Eq. (18) is very similar to Eqs. (7) and (13). For decreasing stress intensity 

factors, Eq. (16) becomes 

 ( ) )(x)>Kdx)P(KλdxP(xdx)λdx)P(x(xP cI−+−−= 1 , (19) 

and the generated differential equation is the same as Eq. (17). Consequently, the propagation 

probability (18) is also true for decreasing stress intensity factors, and can be further 

generalized (Jeulin, 1994). 

III. Probabilistic or DLH Effects 

 In brittle materials, when the weakest link hypothesis can be made, there are three key 

parameters to describe the failure probability: 

• the defect distribution (that can be related to the Weibull parameter (Jayatilaka and 

Trustrum, 1977; Hild and Marquis 1992)), 

• the volume of the structure (Freudenthal, 1968), 

• the stress field heterogeneity (Davies, 1973; Hild and Marquis, 1992). 

These three effects can be accounted for by the so-called effective volume (Davies, 1973). 

 Similarly, we can analyze three different effects in the present framework in which 

crack arrest occurs if one can find a strong grain for which the arrest criterion is satisfied. 

Consequently, there are three effects to be expected on the propagation probability: 

• the effect of toughness distribution (D), 
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• the effect of the crack extension length (L) with respect to the grain size 1/λ, 

• the effect of stress heterogeneity (H). 

To illustrate these effects, we consider a crack emanating from a hole (Fig. 3) for which 

closed-form solutions are available (Murakami, 1987). 

III.1. D Effect: Effect of the Toughness Distribution 

 When the toughness distribution is different from one material to another one, the 

propagation probability is different. In particular, the upper tail (i.e., for high toughnesses) 

plays the most significant role since the arrest condition is related to finding grains with high 

toughnesses. In the following example, a Beta distribution is used. The probability density 

function is defined as 

 ( ) ( )
( ) ( )βα

βα

βα

,
)( 1minmax

1max1min

BKK
kKKkkh

cc

cc
Kc −+

−−

−

−−
= , (20) 

where B is the Euler (or Beta) function of the first kind (Spanier and Oldham, 1987). The 

average toughness cK  and the corresponding standard deviation cK  are expressed as 

 

( ) ( )
( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
+++

=

+
+

+
=

2minmax
2

2

minmax

1 ccc

ccc

KKK

KKK

βαβα
αβ

βα
β

βα
α

 (21) 

Figure 4a shows two Beta distributions and Fig. 4b shows the probability of crack 

propagation when the remote stress field is tensile (σ = 120 MPa). When β is equal to 10, 

there are very few grains with a toughness of the order of mMPaKc  6max = , therefore, the 

propagation probability is high. When β is equal to 1.6, the crack propagation probability is 

lower since more grains are able to stop the crack (the average toughness is higher). When the 

crack path is under a tensile stress, the stress intensity factor is increasing with the crack 
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length. Consequently there exists a crack length x0 such that KI(x0)= . By using Eqs. (7) 

or (13), the extension probability from the length x

max
cK

0 to any greater length becomes constant 

since no grain is able to stop the crack. As we can see in Fig. 4b, the length x0 is less than the 

initial crack length.  

III.2. L Effect: Effect of the Number of Traversed Grains 

 There is a combined effect of crack length and grains size (or number of grain per unit 

length). Therefore the product λ(b−a), which represents the number of grains that are 

traversed by the crack extension b−a, is the key parameter to consider. Everything else being 

identical, when λ(b−a) increases, the probability of crack extension decreases. This result is 

shown in Fig. 5 for two different grain sizes (50 μm and 67 μm). Let us consider two brittle 

media, whose grain size is 1/λ1 and 1/λ2, respectively. For a given crack path and a given 

mechanical configuration, the more grains are traversed, the higher the number of arrest sites 

(or grains) can be found. In particular, when λ1<λ2, then , since ),(),(
21

baPbaP
λλ >

  (22) ( ) ( )(( ⎥
⎦

⎤
⎢
⎣

⎡
>+−−−= ∫

1

0

)(lnexp),( duKauabKPabbaP cIλλ ))

Conversely, when a unique medium is considered, for a given mechanical configuration, the 

higher the extension, the higher the number of traversed grains. The probability of finding an 

arrest site in the crack path (i.e., a grain with a high toughness) then increases, and the 

extension probability usually decreases (Fig. 5). 

III.3. H Effect: Effect of Stress Heterogeneity 

 Last, there is an effect of the applied stress field: the more heterogeneous the stress 

field, the lower the propagation extension since arrest is more likely to occur. This effect can 

be recast as 
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where KImax is the stress intensity factor associated to a uniform tensile stress σmax applied on 

the crack path, with ( )x
x

σσ
b][a,  max max

∈
= . One can show, by using weight functions (Bueckner, 

1970; Rice, 1972), that for any applied stress σ on a given crack path, with a maximum value 

σmax

 )()(
max

xKxK σσ < . (25) 

The factor H is referred to as stress heterogeneity factor and allows one to compare the effect 

of any stress field on crack propagation with a uniform (i.e., tensile) stress field. Figure 6 

shows the stress heterogeneity effect when comparing a uniform stress field to a linear one for 

which the maximum value is reached at the hole (Point P of Fig. 3). The solid line of Fig. 6 is 

obtained with the remote tensile load and the dotted line is directly computed by using Eqs. 

(23) and (24) for a linearly decreasing remote stress. 

IV. Identification of the Toughness Distribution 

 One important part of present model is the evaluation of toughness distribution. In 

particular, we have to determine the toughness probability density function . One of the 

ways to measure the toughness of a ceramic is to use Vickers micro-indentation (Palmqvist, 

1957). 

cKh
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IV.1. Toughness Measurement 

Even though the indentation principle (Fig. 7) is simple, there are many different ways 

to relate the indentation length a, the applied load F and the crack size c (Ponton and Rolling, 

1989a, 1989b), that can be summarized by the following expression  

 ( Fcag
c

FKc ,,
2

3κ= ) , (26) 

where κ is a material-dependent parameter. Two main types of cracks can appear: radial 

cracks and so-called Palmqvist cracks (e.g., for WC-CO cermets): Fig. 8. For many authors, 

the function g is only hardness-dependent, therefore the toughness is written as 

 ( )Hag
c

FKc ,
2

3κ= , when c/2a>1, (27) 

where H  is the hardness. A more recent study (Laval, 1995) shows that the toughness may be 

linearly related with 
2

3
c

F  and therefore g = 1. The parameter κ will be determined by using a 

comparison between the computed value of the average value cK  and the conventional KIc 

value (e.g., determined by using three point bend tests (Lemaitre and Piller, 1988)). 

Indentation measurements are carried out on an alumina ceramic to identify the 

probability density function associated to the toughness distribution. It can be noted that the 

fracture process is intergranular for alumina. The applied force F is obtained by using the 

following masses M: 0.2 kg, 0.3 kg, 0.5 g and 1 kg applied for 15s.  

IV.2. Identification of the Toughness Probability Density Function 

On a polished surface, at least twenty indentations per applied mass have been 

performed. For low masses, (i.e., less than 0.3 kg), crack sizes are on the order of few grains, 

and the indentation process is not always able to create four measurable cracks. Furthermore, 
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some cracks, which have been stopped by a polishing-generated defect, are not considered. 

All the cracks whose length ratio c/2a is less than unity are not accounted for because of 

necessary condition that allows the use of Eq. (27). 

All the methods used to compute toughness are based on a homogeneous material. In 

the present case, the material is assumed to be composed of grains of random toughness. 

Therefore, even though the toughness values directly measured by using Eq. (27) cannot be 

considered, it gives a way of assessing the stress intensity factor of an indentation-generated 

crack. The toughness probability density function can then be determined by using the crack 

propagation model described in Section II.1. Since the number of traversed grains is small, an 

equivalent discrete expression is used instead of Eq. (7) 
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where λc is the number of grains in the propagation length c, and δ is defined as 
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where E(x) is the floor function of the real x. By assuming that the toughness probability 

density function is a Beta function (Eq. (20)), Eq. (28) becomes  
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with . We can note that only four dimensionless parameters describe the 

propagation of indentation-generated cracks: α, β, 

minmax
cc KKK −=Δ

K
Kc

Δ

min

, the parameters of the Beta 
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distribution and 
K

F
Δ

2
3

λκ  a dimensionless parameter representative of the indentation test. An 

identification of these four parameters has been performed for alumina, based on the 

experimental results with a given indentation mass, i.e., the one with the most indentation-

generated crack lengths. For the sake of simplicity, a least squares method is used (a 

maximum likelihood technique could have been used). The cumulative probability associated 

to a measured length is computed by using the following procedure: all the measured crack 

lengths are ordered in an increasing way, and 

 ( )
1+

=<
n

jccP j , (31) 

where c is the random crack length, cj the jth experimental ordered value, and n the total 

number of experimental values. 

The results obtained for M=0.3 kg have been considered for the identification (Table 

1). Furthermore, when the material constants are identified, i.e., α, β, , the change of the 

indentation parameter 

min
cK

KΔ

2
3

κλ , a priori hardness-dependent, can be determined for other values 

of M. Table 2 shows that this parameter is almost constant for alumina with an average value 

of 0.45 N-1. Furthermore, we can see that for alumina, there is a predominance of low 

equivalent toughness values (i.e., low α, and high β). To determine the value of the 

indentation parameter κ, one has to know, for instance, the mean toughness of a ceramic. By 

using an independent experiment (Lemaitre and Piller, 1988), the average toughness KIc can 

be exhibited. It follows that the value of  can be related to α, β and Kmax
cK Ic (when =0, 

see Eq. (21)) 

min
cK

 max
cIc KK

βα
α
+

= . (32) 
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For alumina, a value of KIc=4.5 MPa m  can be found, so that mMPa 2.19max =cK . Figure 

9a shows the toughness probability density function for alumina, and Fig. 9b a comparison 

between experimental results and predicted probabilities. Each solid line corresponds to an 

individual identification of the indentation parameter. The dashed lines are obtained when the 

indentation parameter 
KΔ

2
3

κλ  determined for M=0.3 kg is used for other masses. A good 

agreement is obtained that confirms the assumption of a constant indentation parameter 
KΔ

2
3

κλ  

for the tested Al2O3 ceramic. 

IV.3. Discussion: the Indentation Parameter 

 By using the proposed random propagation model, we can see that the experimental 

results of the indentation process for other masses can be predicted, once the different 

material properties are known. In particular, the basic hypothesis, that ceramics are composed 

of grains with random toughnesses is relevant. All of the derived considerations on the DLH 

effects can be observed. Furthermore, one can note the influence of the indentation mass on 

the experimental crack length: the higher the applied mass, the higher the extension 

probability. By using the expression of the stress intensity factor of indentation-generated 

cracks (Eq. (27)), the applied stress heterogeneity decreases with an increasing applied mass. 

The H effect is confirmed by experimental observations.  

Once the toughness probability density function is determined, i.e., the values of α, β, 

 and , the probabilistic propagation model (Eq. (7)) can be used to compute the 

extension probability of a real structure. 

min
cK max

cK
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VI. Study of an Industrial Structure 

 The ability of a ceramic/metal assembly to survive the processing stage is conditioned 

by the resistance of its brittle part. The process induces a residual stress field, which may or 

may not stop initiated cracks. 

V.1. Fabrication Process of the Studied Structure 

The two main materials are a stainless steel (A304L) and a 97% purity alumina. The 

brazing joint is made of an Ag-Cu eutectic (Fig. 10). Since alumina is not a metallic material, 

classical brazing joints are unable to bond on its surface. First a metallisation of the alumina 

surface must be performed (Fell, 1994; Kara-Slimane, 1996). The aim of such a process is to 

create a continuous material from alumina to nickel, on which the brazing joint will bond 

(Fig. 11). Once this step is performed, the joining process can start. The different parts of the 

final structure (two stainless steel cylinders and an alumina one) are submitted to an 

increasing temperature from the room to the brazing joint melting temperature (i.e., 780°C). 

After the liquid brazing metal has penetrated between the different cylinders by capillarity, 

the external temperature is decreased to the room temperature thereby generating residual 

stresses. 

V.2. Initiation in a Singular Stress Field 

In the previous probabilistic treatment of crack propagation, the problem of crack 

initiation has not been analyzed. In the present case, singularities exist in the studied structure. 

They are responsible for the initiation of macro-cracks from initial flaws within the ceramic. 

A Weibull model will be used to asses the initiation probability even though a weakest link 

hypothesis is not made (i.e., initiation does not lead to final failure).  
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A strong singularity is generated either when there is a discontinuity in a structure 

geometry (crack tip, or angular point: Fig. 12) or when there is an elastic property mismatch. 

The stress field near these singularities is very high, thereby leading to crack initiation and 

propagation. 

By using Weibull model, the initiation probability PI near singularities can be 

computed 
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where V0 is an elementary volume, m the Weibull modulus (i.e., shape parameter), S0 the scale 

parameter, ),,( zyxeqσ  the maximum principal stress, .  the Macauley brackets, and Ω the 

studied volume. The parameters m, S0 and V0 are material-dependent. Near a singular point, 

the stress field, in polar coordinates, has the following form 

 ( ) )(, θθσ Σ= pr
Ar ,  (34) 

where 0 < p < 1 is the singularity exponent, A a stress-dependent constant, and Σ  a correction 

function which is only dependent on the angle θ. The initiation probability in an area between 

a radius a and b (Fig. 12) is assessed by only considering the singular part of the stress field 

(Eq. (34)). The initiation probability PI in the vicinity of a singular point only depends of the 

product pm: 

• if 2 − pm≠0 

 
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−Σ

−−=
−−

pm
ab

V
A

P
pmpmmm

eqm
I 2

exp1
22

0

maxα
, (35) 

• if 2 − pm=0 
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where  represents the maximum positive principal value of the tensor max
eqΣ Σ , and αm is a 

constant generated by the integration of Eq. (33)  

 ∫ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Σ

Σ
=

θ

θ
θ

α d
S

m

eq

eq
mm max

0

)(1 . (37) 

When a vanishes, the initiation probability computed by Eqs. (35) and (36) becomes the 

initiation probability induced by a singular point, and then, for any A, V0, So and S , if pm ≥ 2, 

then ( )+=Σ 0max
eqIP =1, and if pm < 2, then ( )+=Σ 0max

eqIP <1. For a given singular point, only 

the Weibull modulus m will determine the ability of a structure to resist to a singular stress. 

This modulus being material-dependent, the knowledge of the singularity exponent will 

determine the initiation conditions (Lei et al., 1998). 

 It can be noted that these results can be further generalized by accounting for 

singularities arising in bi-materials. It is still the product of the singularity exponent, or its real 

part for an oscillating solution (Suo, 1990), by the Weibull modulus that has to be compared 

to 2 (Charles, 2002). 

V.3. Crack Extension 

 The fabrication process is simulated by using the FE code Castem2000 (Laborderie 

and Jeanvoine, 1995). A viscoplastic model (Lemaitre et Chaboche, 1988) is used for the 

stainless steel and an elastic perfectly viscoplastic model for the brazing joint (Lovato, 1995). 

The ceramic is assumed to be perfectly elastic (Appendix). In the thermomechanical 

computation, the temperature field is assumed to be uniform since the maximum temperature 

rate (i.e., −0.4°C.s-1) is small compared with the outer radius (i.e., 13.7 mm). Figure 13 shows 
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a map of equivalent stresses (the von Mises stress in stainless steel and the brazing joint, and 

the maximum principal stress in alumina). One can note the potential initiation and 

propagation sites. The finite elements (i.e., so-called Barsoum (1976) elements) near these 

singular points shown in Fig. 13 enable one to evaluate the singularity exponents. By using 

the map of equivalent stresses and the Weibull model (Eq. (33)), a map of initiation 

probabilities in the ceramic part at the end of the cooling process can be obtained (Fig. 14). 

The Weibull parameters used to perform this computation are V0 = 10-9 m3, S0 = 200 MPa, 

and m = 10 (Fett and Munz, 1994). By using Eqs. (35) and (36) and the results of Section 

V.2., one can conclude that all the singularity exponents p are such that pm ≥ 2, i.e., 

( )+=Σ 0max
eqIP =1. Consequently four cracks are likely to initiate from flaws located near these 

singularities.  

 By using the map of equivalent stresses (Fig. 13), some crack paths can be determined: 

all of them are initiated in the vicinity of a singular point, and they are always perpendicular 

to the maximum principal directions (Fig. 15a). At the singular point no. 1, at least two 

directions of propagation may occur. Furthermore, some singularity exponents (point no. 3 

and no. 5) have been computed at t = 0+ and at the end of the cooling process (Table 3). 

Because of the non-linear behavior of the brazing joint and the stainless steel, these exponents 

are higher at the beginning of the cooling process than at the end.  

On few determined crack paths, i.e., the ones that might be the more dangerous for the 

structure life, the applied stresses have been extracted from the FE computation of the cooling 

process, and by using weight functions (Bueckner, 1970; Rice, 1972) and Eq. (7), the 

propagation probabilities of all these cracks are computed (Fig. 15b). The toughness density 

probability function corresponds to the one identified in Section IV (Table 1). None of the 

five studied cracks can propagate through the whole alumina structure. But the propagation 

probability can be initially high for a small initiation crack length a (Eq. (7)). Then, some 
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cracks are existing in ceramic/metal assemblies but they are arrested near compressive or low 

tensile zones. This has been confirmed by the manufacturer of the studied assemblies (Duval, 

2000).  

VI. Conclusions 

This study on ceramic/metal assemblies allows us to exhibit a random crack 

propagation model, based on a microstructural hypothesis, i.e., a random toughness of each 

grain or grain boundary of a brittle medium, that can explain their reliability after the 

manufacturing process. The DLH effects, derived from the model, account for the toughness 

distribution, propagation length relative to grain size and the stress field heterogeneity on the 

crack extension probability. This model has been applied to micro-hardness experiments and 

after an identification of the different material parameters, i.e., the toughness probability 

density function and the indentation parameter for a given load, it leads to a good predictions 

of the measured indentation-generated crack length for other load levels for alumina. The 

model is then applied to a real structure to determine the influence of the manufacturing 

process on crack initiation and propagation in the brittle part. 

 The use of such a probabilistic approach allows for the computation of the crack 

propagation probability for each identified path. A second step of the study would be the 

consideration of a fatigue crack propagation model. The propagation of the different cracks in 

the alumina part with an increasing time has to be computed, and a lifing procedure of such 

ceramic/metal assemblies can then be devised. This work is still in progress. 
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Appendix 

 The constitutive equations modeling the thermomechanical behavior of A304L 

stainless steel and the brazing joint (i.e., Ag-Cu eutectic) are based on the following 

viscoplastic model (Lemaitre and Chaboche, 1985). A small strain partition is assumed 

 thpe εεεε ++=  (A1) 

where ε  denotes the infinitesimal strain tensor, pε  the plastic strain tensor, thε  the thermal 

strain tensor, and eε  the elastic strain tensor related to the Cauchy stress tensor σ  by 

 1:1 σνσνε
EE

e −
+

=  (A2) 

and 

 1:)( refth
th TT −= αε  (A3) 

where E and ν denote the Young’s modulus and Poisson’s ratio, respectively, αth the 

coefficient of thermal expansion, ‘:’ the contraction with respect to two indices, 1 the unit 

tensor, T the current temperature and Tref a reference temperature. The viscoplastic model is 

based on non-linear kinematic and isotropic hardenings within the framework of the J2 flow 

rule so that the strain rate tensor pε  can be written as 
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 (A4) 

where  is the cumulative plastic strain rate, pp S  is the deviatoric part of the stress tensor, X  

the kinematic hardening variable and R the isotropic hardening variable, J2 the second 
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invariant of any considered tensor, .  the Macauley brackets, Kn and n material parameters, 

and yσ  the yield stress. The kinetic laws for the hardening variables are given by 

 
pR

p
p

pRQbR

pXCX

)(
3
2

−=

−= γε
 (A5) 

where C, γ, bR, Q are material parameters. Table A1 summarizes the parameters used in the 

computation to model the viscoplastic behavior of A304L. For the brazing joint, an elastic and 

purely viscoplastic model is chosen. The plastic strain rate tensor is then expressed as 
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The corresponding material parameters are reported in Table A2. Table 3 gives the parameters 

used to model an alumina ceramic. 
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Table A1. Parameters for A304L stainless steel.  
A linear interpolation is used for intermediate temperatures. 

T 

(°C) 

E 

(GPa) 

ν αth

(C-1) 
yσ  

(MPa)

Q 

(MPa)

bR C 

(MPa)

γ Kn

(MPa) 

n 

20 196 0.29 15.7 x 10-6 250 60 8 162 2800 151 24 

600 137 0.29 19.4 x 10-6 130 80 10 24 300 150 12 

 

 

Table A2. Parameters for Ag-Cu eutectic (after (Lovato, 1995)). 
A linear interpolation is used for intermediate temperatures. 

T 

(°C) 

E 

(GPa) 

ν αth 

(C-1) 
yσ  

(MPa) 

Kn

(MPa) 

n 

20 95 0.37 18.2 x 10-6 247 85 10.1 

100 95 0.37 18.2 x 10-6 183 79 9.3 

200 95 0.37 18.2 x 10-6 87 38 7.2 

300 95 0.37 18.2 x 10-6 40 31 6.9 

400 95 0.37 18.2 x 10-6 27 13 4.9 

500 95 0.37 18.2 x 10-6 13 7 3.2 

600 95 0.37 18.2 x 10-6 6 6 1.2 

700 95 0.37 18.2 x 10-6 2 6 1.2 

 

 

Table A3. Parameters for an alumina ceramic. 

E 

(GPa) 

ν αth 

(C-1) 

S0

(MPa) 

V0

(m3) 

m 

 
 

330 
 

0.26 
 

7.9 x 10-6
 

200 
 

10-9
 

10 
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Figure Caption 

 

Figure 1: Crack path for transgranular propagation. 

 

Figure 2: Pattern of the microstructure boundary for intergranular propagation. under an 

overall mode I loading 

 

Figure 3: Geometry used for numerical simulations (a = 0.1 mm, R = 5 mm). Two different 

remote stress fields are considered. A uniform stress along the normal to the crack face and a 

linearly decreasing stress (−20 MPa/mm) whose maximum value is identical to that of the 

uniform field when a = 0. 

 

Figure 4:  

-a- Two different toughness distributions with a constant standard deviation 

( )mMPa 46.0=cK  and different averages ( )ly respective ,mMPa 5 and mMPa 2.7  

-b- Crack extension probabilities for the two distributions (σ = 120 MPa,  = 0 MPa
min
cK m , 

 = 6 MPamax
cK m , λ = 105 m-1, and a = 10-4 m). 

 

Figure 5: Crack extension probability for different values of λ (σ = 80 MPa, = 0 

MPa

min
cK

m , K c
max  = 6 MPa m , α = 8, β = 10, and a = 10-4 m) 
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Figure 6: Influence of the applied stress field on the crack propagation probability (σmax = 120 

MPa,  = 0 MPamin
cK m , K c

max  = 6 MPa m , α = 8, β = 10, λ = 105 m-1, and a = 10-4 m) 

 

Figure 7: Toughness measurements based on micro-indentation experiments 

 

Figure 8: Different crack systems generated by indentation. 

 

Figure 9: 

-a- Identified toughness distribution for alumina. 

-b- Extension probability versus crack length for different applied masses on alumina. 

 

Figure 10: Studied ceramic/metal assembly. 

 

Figure 11: Interface generated by the metallisation process. 

 

Figure 12: Geometry near a singular point. 

 

Figure 13: Equivalent stresses in the structure (von Mises stresses in the ductile parts and 

maximum principal stress in the ceramic) at the end of the processing stage. 

 

Figure 14: Map of the initiation probability in the alumina part. 

 

Figure 15: 

-a- Possible crack paths in the alumina part (a=2.2 x 10-4 m) 

-b- Propagation probabilities for the different crack paths. 
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Table Caption 

 

Table 1: Toughness parameters for a 97% alumina ceramic. 

 

Table 2: Indentation parameter 
KΔ

2
3

κλ  for different applied masses (average value: 0.45 N-1). 

 

Table 3: Singularity exponent at different singularity points at the beginning and the end of 

the fabrication process 
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Table 1: Charles and Hild 
 

λ (m-1) α β 

( )mMPa

      max
cK

( )mMPa

      min
cK

 
M (kg) 

KΔ

2
3

κλ  (N-1)

5.105 2.8 9.1 19.2 0 0.3 0.45 

 

Table 2: Charles and Hild 
 

 

Mass M (kg) 

 

0.2  

 

0.3  

 

0.5  

 

1  

KΔ

2
3

κλ  (N-1) 

 

0.52 

 

0.45 

 

0.44 

 

0.45 

 

Table 3: Charles and Hild 
 

Singularity Singularity exponent at the 
beginning of the cooling process 

Singularity exponent at the 
end of the cooling process 

no. 3 0.41 0.22 

no. 5 0.70 0.19 

 
 

 

 32



Figure Caption 

 

Figure 1: Crack path for transgranular propagation 

 

Figure 2: Pattern of the microstructure boundary for an intergranular propagation 

 

Figure 3: Geometry used for numerical simulations 

 

Figure 4a: Two different toughness distributions, with a constant standard deviation 

K c = 0.46 MPa m( ) and different averages 2.7 MPa m and 5 MPa m, respectively ( ) 

 

Figure 4b: Crack extension probabilities for two different Beta distributions with different 

averages and constant standard deviation (σ=120 MPa, Kc
min

=0 MPa m , Kc
max

=6 MPa m , 

λ=105 m-1, and a=10-4 m) 

 

Figure 5: Crack extension probability for different values of λ (σ=80 MPa, K c
min=0 MPa m , 

=6 MPaK c
max m , α=8, β=10, and a=10-4 m) 

 

Figure 6: Influence of the applied stress field on the crack propagation probability (σmax=120 

MPa, K c
min=0 MPa m , K =6 MPac

max m , α=8, β=10, λ=105 m-1, and a=10-4 m) 

 

Figure 7: Toughness determination by micro-indentation measurement 
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Figure 8: Different crack systems generated by indentation 

 

Figure 9a: Identified toughness distribution for alumina 

 

Figure 9b: Extension probability versus crack length for different applied masses 

 

Figure 10: Studied ceramic/metal assembly 

 

Figure 11: Interface generated by the metallisation process 

 

Figure 12a: Geometry near a singular point 

 

Figure 12b: Half-infinite assembled materials 

 

Figure 13: Equivalent stresses in the structure (von Mises stresses in the ductile part and 

maximum principal stress in the ceramic) at the end of the processing stage 

 

Figure 14: Numerical computation of the initiation probability in the alumina part 

 

Figure 15a: Possible crack paths in the alumina part (a=2.210-4 m) 

 

Figure 15b: Propagation probabilities for the different crack paths 
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Figure 4a: Charles and Hild 
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Figure 9a: Charles and Hild 
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Figure 10: Charles and Hild 
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Figure 15a: Charles and Hild 
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Figure 15b: Charles and Hild 
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Table Caption 

 

Table 1: Toughness parameters for a 97% alumina ceramic 

 

Table 2: Indentation parameter 
kλ

3
2

ΔK
 (N-1) for different applied masses (average: 0.45 N-1) 

 

Table 3: Singularity exponent at different singularity points 
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Table 1: Charles and Hild 

 

λ (m-1) 

 

α 

 

β 
     Kc

max  

MPa m( )
     Kc

min  

MPa m( )
 

M (kg) 

 

kλ
3

2

ΔK
 (N-1)

5.105 2.8 9.1 19.2 0 0.3 0.45 
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Table 2: Charles and Hild 
 

Mass M (kg)
 

0.2  
 

0.3  
 

0.5  
 

1  

kλ
3

2

ΔK
 (N-1) 

 

0.52 
 

0.45 
 

0.44 
 

0.45 
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Table 3: Charles and Hild 
 

 
Singular point 

Singularity exponent at the 
beginning of the cooling 

process 

 

Singularity exponent at the 
end of the cooling process 

No. 3 0.41 0.22 
No. 5 0.70 0.19 
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